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Abstract 

Removing the tidal component from sea level measurement in the case of Tropical 

Cyclones or Tsunami is very important to distinguish the tide contribution from the one of 

the Natural events. The report describes the methodology used by JRC in the de-tiding 

process and that is used for thousands of sea level measurement signals collected in the 

JRC Sea Level Database. 
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1 Introduction 

Detiding mechanism is very important for the analysis of sea level behavior in the case of 

Tropical Cyclones or Tsunami as it is necessary to distinguish the tide contribution from 

the one of the Natural events. The situation is even more exacerbated when real-time 

analysis is to be performed and the need to compare detied signals with calculated 

values, such as online publication of storm surge data. 

 

The interest of JRC is in the frame of the Global Disasters Alerts and Coordination System 

(GDACS, http://www.gdacs.org), a system developed in the frame of a cooperation 

between JRC and the United Nations. It includes disaster managers and disaster 

information systems worldwide and aims at filling the information and coordination gap in 

the first phase after major disasters.  GDACS provides real-time access to web‐based 

disaster information systems and related coordination tools. The Natural Disasters 

considered in GDACS are Earthquakes, Tsunamis, Tropical Cyclones and Floods. 

 

 

Figure 1 - Comparison of measured and calculated storm surge in Philippines, during the Tropical 

Cyclone RAMASSUN (July 2014) 

 

 

 

 

 

 

 

 

 

http://www.gdacs.org/
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An example is shown in the Figure 1 in which the calculated storm surge is compared 

with the estimated one from the sea level measurement for the RAMASSUN Tropical 

Cyclone that hit Philippines in July 2014. In order to perform this comparison it is 

necessary to de-tide the measured value (ML, brown curve in Figure 2 and Figure 3) 

from the estimated tide (TD) in that location, green curve. The difference between those 

two is the storm surge SS, compared in Figure 1 with the calculated value:  

 

SS=ML-TD 

 

 

 

Figure 2 – Measured (brown curve) sea level and estimated tide from Harmonics 

 

 

Figure 3 – Measured (brown curve) sea level and estimated tide from Harmonics during the storm 
surge 
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At the same time it is also possible to add the estimated tide to the sea level calculated 

by the codes that do not calculate tide (see Figure 3) to compare the measured level 

with the estimated sea level. In this case, Figure 1 is much more representative of the 

deviation from the normal conditions due to the passage of the tropical cyclone. 

 

It could also be possible to use global tide models to obtain the tide behavior at the 

location of the measurements, such as DTU101 . These models are valid worldwide but 

for specific locations where the tide gauge are installed (ports, small habours etc) it is 

better to derive the harmonics of the tide gauge and use these for tediting process. In 

these locations, the global models are not so accurate because the local characteristics 

can influence the tide estimation. 

 

The determination of the harmonics coefficients from the measured data is a known 

method, based on least square approximation of the first order in the coefficients. 

However the computational requirements when several years of data are considered may 

be a limiting factor for a routine and frequent update of the coefficients; several centres 

determine the constants once a year or less frequent. This paper describes a new 

method, named Continuous Harmonics Determination (CHD), that is used at JRC in order 

to continuously compute the harmonics with a rather limited computing time; this allows 

to repeat the harmonics identification procedure once per hour for thousands of different 

sensors worldwide.  

  

                                           
1 Yongcun Cheng, Ole Baltazar Andersen, (2010). Improvement in global ocean tide model in shallow water 

regions. Poster, SV.1-68 45, OSTST, Lisbon, Oct.18-22. 
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2 Methodology 

2.1 Harmonics constituents 

The objective is the estimation of the tide harmonics constants which constitutes the 

coefficients of a series of periodic terms. The definition of the terms varies from 

organization to organization.  

For instance the National Oceanographic Center in UK uses the following formulation2: 

 

L=Ho+Σ Hn cos (σnt − gn) 

 

Where  

t  is the time since 1976  

σn is the speed expressed in rad/s, so that the period in h would be: Th=1/3600 2 

π/σn    

gn is the phase expressed in rad but the published data are in Degrees 

 

NOAA3 uses another similar but not identical formulation of the terms 

 

L=Ho+Σ Hn cos (sn th π/180 − gn) 

 

The difference is the speed definition that in their case is 

 

th is the time in hours since 1976 

sn rate change in the phase of a constituent, expressed in degrees per hour. The 

speed is equal to 360 degrees divided by the constituent period expressed in 

hours. The period in this case is Th=360/sn 

gn is the phase expressed in rad and the published data are in degrees 

 

 

The third example is the Italian Institute for the Environmental Research, responsible for 

the mareographic network, who uses another formulation4 

 

L=Ho+Σ Hn cos (fn t − gn) 

 

Where  

Fn is expressed in cycles per cycles per hour 

 

                                           
2 http://www.ntslf.org/tides/constants  
3 http://tidesandcurrents.noaa.gov/harcon.html?id=8730667  
4 http://www.mareografico.it/?session=0S159124986967899068A838074&syslng=ita&sysmen=-1&sysind=-

1&syssub=-1&sysfnt=0&code=ARCH  

http://www.ntslf.org/tides/constants
http://tidesandcurrents.noaa.gov/harcon.html?id=8730667
http://www.mareografico.it/?session=0S159124986967899068A838074&syslng=ita&sysmen=-1&sysind=-1&syssub=-1&sysfnt=0&code=ARCH
http://www.mareografico.it/?session=0S159124986967899068A838074&syslng=ita&sysmen=-1&sysind=-1&syssub=-1&sysfnt=0&code=ARCH
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At JRC we always used yet another method to express the constituents, based on a sum 

of sinus and cosines terms: 

L=Ho+Σ An cos (σn t*) + Bn sin(σn t*) 

Where  

t* is the time in s since 1900 

σn is the speed expressed in rad/s, so that the period in h would be:Th=1/3600 2π/σn    

 

As all the formulation need to provide the same component for the same constituent, the 

following equality is always valid: 

 

Hnocs cos (σnocst − gnocs)=HNOAA cos (sNOAA th π/180 − gnoaa) = HISPRA cos (fISPRA t – gISPRA) = AJRC cos 

(σJRC t*) + Bn sin(σJRC t*)  

 

To change from one to another formulation requires some trigonometric functions 

involving the coefficients A, Bn, and some change in the input independent variable time 

or in the period in days or hours (See appendix A for an example). 

Also the number of published components data varies a lot. NOAA publishes 37 

components of the harmonics, NOCS 4 and ISPRA 60.  

 

# Name Period(h) NOAA NOCS ISPRA Description 

1 M8 3.10515031 X 
  

Shallow water eighth diurnal constituent 

2 S6 4.00000000 X 
  

Shallow water overtides of principal solar 
constituent 

3 M6 4.14020040 X 
  

Shallow water overtides of principal lunar 
constituent 

4 2SK5 4.79737334 
  

X 
 

5 2MK5 4.93087894 
  

X 
 

6 SK4 5.99179843 
  

X 
 

7 S4 5.99999880 X 
 

X 
Shallow water overtides of principal solar 
constituent 

8 MK4 6.09485174 
  

X 
 

9 MS4 6.10334054 X 
 

X Shallow water quarter diurnal constituent 

10 SN4 6.16019210 
  

X 
 

11 M4 6.21030065 X 
 

X 
Shallow water overtides of principal lunar 
constituent 

12 MN4 6.26917584 X 
 

X Shallow water quarter diurnal constituent 
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13 SK3 7.99270426 
  

X 
 

14 MK3 8.17714309 X 
 

X Shallow water terdiurnal 

15 SO3 8.19242365 
  

X 
 

16 M3 8.28040087 X 
 

X Lunar terdiurnal constituent 

17 2MK3 8.38629981 X 
 

X Shallow water terdiurnal constituent 

18 2SM2 11.60695156 X 
  

Shallow water semidiurnal constituent 

19 ETA2 11.75452232 
  

X 
 

20 MSN2 11.78613168 
  

X 
 

21 K2 11.96723515 X 
 

X Lunisolar semidiurnal constituent 

22 R2 11.98359685 X 
 

X Smaller solar elliptic constituent 

23 S2 11.99999904 X 
 

X Principal solar semidiurnal constituent 

24 T2 12.01644908 X 
 

X Larger solar elliptic constituent 

25 L2 12.19162058 X 
 

X Smaller lunar elliptic semidiurnal constituent 

26 LAM2 12.22177436 X 
 

X Smaller lunar evectional constituent 

27 MKS2 12.38550069 
  

X 
 

28 H2 12.40302847 
  

X 
 

29 M2 12.42060131 X X X Principal lunar semidiurnal constituent 

30 H1 12.43822401 
  

X 
 

31 NU2 12.62600437 X 
 

X Larger lunar evectional constituent 

32 N2 12.65834802 X 
 

X Larger lunar elliptic semidiurnal constituent 

33 MU2 12.87175727 X 
 

X Variational constituent 

34 2N2 12.90537393 X 
 

X 
Lunar elliptical semidiurnal second-order 
constituent 

35 EPS2 13.12726847 
  

X 
 

36 OQ2 13.16223481 
  

X 
 

37 UPS1 21.57823654 
  

X 
 

38 OO1 22.30607323 X 
 

X Lunar diurnal 

39 SO1 22.42017744 
  

X 
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40 J1 23.09847573 X 
 

X Smaller lunar elliptic diurnal constituent 

41 THE1 23.20695522 
  

X 
 

42 PHI1 23.80447386 
  

X 
 

43 PSI1 23.86929935 
  

X 
 

44 K1 23.93446743 X X X Lunar diurnal constituent 

45 S1 23.99999808 X X X Solar diurnal constituent 

46 P1 24.06588855 X 
 

X Solar diurnal constituent 

47 PI1 24.13214182 
  

X 
 

48 CHI1 24.70906924 
  

X 
 

49 M1 24.83324836 X 
  

Smaller lunar elliptic diurnal constituent 

50 NO1 24.83325093 
  

X 
 

51 BET1 24.97475676 
  

X 
 

52 TAU1 25.66813514 
  

X 
 

53 O1 25.81934463 X X X Lunar diurnal constituent 

54 RHO 26.72305330 X 
  

Larger lunar evectional diurnal constituent 

55 RHO1 26.72305588 
  

X 
 

56 Q1 26.86835848 X 
 

X Larger lunar elliptic diurnal constituent 

57 SIG1 27.84838892 
  

X 
 

58 2Q1 28.00622298 X 
 

X Larger elliptic diurnal 

59 ALP1 29.07266626 
  

X 
 

60 MF 327.85917793 X 
 

X Lunisolar fortnightly constituent 

61 MSF 354.36740103 X 
 

X Lunisolar synodic fortnightly constituent 

62 MM 661.31005522 X 
 

X Lunar monthly constituent 

63 MSM 763.48699782 
  

X 
 

64 SSA 4382.88920056 X 
 

X Solar semiannual constituent 

65 SA 8766.54685719 X 
 

X Solar annual constituent 

Table 1 - Components of the harmonics of NOAA, NOCS and ISPRA 
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Some of the methods establish the tides components each year (ISPRA) or use corrective 

functions in order to take into account slow components variations and use the same 

formulation per each year (NOAA). Most of the systems determine the new components 

once a year and then use the estimated components for another year. 

 

At JRC we use all 69 harmonics components and all the available data (3 years for most 

of the data with few exceptions in which we have 10 years or more of data) and have 

established a procedure (Continuous Harmonics Determination - CHD) that allows easily 

to take into account all the data despite the number of years. The estimation is 

performed every hour and requires, for some 1000 signals, about 30-40 min in total. The 

estimated values considered are related to the whole amount of data available. 

 

It is clear that the method is valid if the data are valid and if the reference point of the 

measurement is kept constant over the years, which sometimes is not the case. It is 

therefore necessary from time to time, to check the consistency of the collected data. 
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3 The Continuous Harmonics Determination method 

3.1 Least square method 

The method consists in obtaining a least square approximation of the harmonics 

constituents using as data a large number of measurements over a number of years. The 

discussion is here conducted considering the two components An, Bn of sin/cos but a 

similar analysis could be determined using the other formulations. In any case it is easy 

to convert the constants obtained with one method into the other ones. 

Each measurement Yi(t0) can be expressed as a linear combination of the harmonics 

terms plus an error: 

 

Yi(t0) = c o + cc1 cos(f1 t0) + cs1 sin(f1 t0) + cc2 cos(f2 t0) + cs2 sin(f2 t0)… + ccn 

cos(fn t0) + csn sin(fn t0)  +ε           

 

Where ε is the error and n is the number of harmonics considered in the expansion. 

The objective is to minimize the overall error over the N points assumed: 

totErr2=2=Σj=1,N (  Yj  -  co - Σi cci  cos(fi tj) + csi  sin(fi tj) )2 

This can be rewritten as a series of coefficients 

totErr2=2= Σj=1,N (  Yj  - ao – Σi=1,2n ai  Xi
j
 )2 

with  

ao=co 

ai=cci     for i=1,n 

ai=csi     for i=n+1,2n 

Xi
j=cos(fi tj)   for i=1,n 

Xi
j=sin(fi tj)   for i=n+1,2n 

 

the derivation of the total error for each coefficient produces a matrix C of order 

(2n+1)x(2n+1) in which each term can expressed as a linear combination of the various 

sums. 

The coefficients are obtained differentiating the quantity  with respect to the various 

coefficients ai.  

/ a o  = 2 N a o– 2  Yj  + 2 a1  X1
j + 2 a2  X2

j + … + 2 an  Xn
j  

 

/ a 1 = 2 a1  (X1
j )2 – 2  (Yi

j X1
j ) + 2 ao   X1

j  + 2 a2  (X1
j X2

j) + … + 2 an  (X1
j Xn

j)  

/ a 2 = 2 a2  (X2
j )2 – 2  (Yi

j X2
j ) + 2 ao   X2

j  + 2 a1  (X1
j X2

j) + … + 2 an  (X2
j Xn

j)  

 

… 

 

/ a n = 2 an  (Xn
j )2 – 2  (Yi

j Xn
j ) + 2 ao   Xn

j  + 2 a1  (X1
j Xn

j) + … + 2 an-1  (Xn-1
j Xn

j)  
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Setting all those derivatives to zero, it is possible to determines the coefficients  

 

a o , a1, a 2, … a n 

 

by solving the corresponding system of equations, whose matrix representation is the 

following: 

 

 N  X1
j  X2

j …  Xn
j    ao    Yi

j 

  X1
j  (X1

j)2  (X1
j 

X2
j) 

…  (X1
j Xn

j)    a1    (X1
j Yi

j) 

  X2
j  (X1

j 

X2
j) 

 (X2
j)2   (X2

j Xn
j)  *  a 2  =  (X2

j Yi
j) 

 … …           

  Xn
j  (X1

j 

Xn
j) 

 (X2
j 

Xn
j) 

…  (Xn
j)2    a n    (Xn

j Yi
j) 

 

 

This solution system can be symbolically expressed as 

 

[C] [x]=[Tn] 

 

The unknown vector is obtained by inverting the C matrix 

 

[x]= C-1 Tn 

 

Once the coefficients a0, a1…  have been obtained it is possible to back obtain the 

original harmonics coefficients c0, cc1, cs1, cc2, cs2 etc. 

 

Although the inversion of the matrix does not depend on the number of points considered 

but only by the number of harmonics, the estimation of the matrix for a large number of 

points can still be quite time consuming because it is necessary to sum all the terms for 

all the available data points in order to compose the coefficients for C and Tn. Therefore 

we identified a method, that we call CHD (Continuous Harmonics Determination) that 

allows to progressively calculate the harmonics without the need to compute them since 

the beginning. 

 

This means that having the harmonics calculated at a certain time and the original matrix 

C, obtained using a set of data N, and having an additional set of data N1, the objective 

is to find a method to avoid to compute the harmonics using all the data N+N1 but rather 

using only the additional data N1. 
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If one needs to analyse the least square method for the large sample N+N1, each term in 

the matrix C will be something like 

 

N+N1 (X2
j Xm

j) 

 

That can be expressed as 

 

N (X2
j Xm

j) + N1 (X2
j Xm

j) 

 

And the same for the know terms 

 

 N+N1 (Xm
j Yi

j)=  N (Xm
j Yi

j)+  N1 (Xm
j Yi

j) 

 

Using the properties of the matrices this means that the solution of the system 

 

[CN+N1] [x]=[TnN+N1] 

 

Is equivalent to solve the system 

 

([CN]+ [CN1]) [x]=[TnN]+ [TN1] 

This means that keeping the individual elements of the matrix at the previous calculation 

CN and known term TnN, it is possible to estimate the new matrix and known terms 

[CN+N1]  and [TnN+N1]  adding to each element of the matrix the terms corresponding to 

the additional points. Once inverted the matrix the resulting solution is corresponding to 

the overall number of points N+N1. 

This method is extremely efficient because to obtain the solution vector for a series of 10 

years of data may require also 10-12 min of computing time while storing the previous 

matrix and just adding the new available data to the old base matrix will take only few 

seconds.  

Using this procedure it is possible to perform the harmonics estimation very frequently. 

At JRC we estimate the harmonics for more than 1000 signals once every hour. 
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4 Harmonics estimation using previous computations 

4.1 Computations using overall harmonics over a period 

The method described above is quite effective but it requires the estimation of the 

components of the harmonics using all the data. Once these have been obtained the 

following steps is easier as it involves only the additional points N1. 

 

Assuming that it is possible to convert the harmonic constants by other organizations it 

would be quite useful to use those values in order to estimate the new period without the 

need to reprocess all the data with which the harmonics were obtained.  

 

In other terms it is necessary to reproduce all the terms of the matrix C and of the 

known terms Tn so that in the following step they can be used with the method described 

above. 

 

This can be done by recreating each individual term of the matrix C by recreating an 

equivalent set of data corresponding to the number of points N with which the “foreign” 

harmonics were obtained and estimating the corresponding known terms by the 

equation. Given Tmin and Tmax the time range, it is possible to generate a series 

x1,x2,…xN  at equally spaced interval 

 

DT=(Tmax-Tmin)/N 

 

and estimating the corresponding y1,y2,…yN 

 

using the series  

 

Yi = a o + a1 cos(f1 xi) + b1 sin(f1 xi) + a2 cos(f2 xi) + b2 sin(f2 xi)… + an cos(fn xi) + bn sin(fn xi)            

 

The resulting matrix C will be equivalent to the one that could be obtained using the 

original data x,y. It is necessary however to follow the following important conditions: 

 

- The maximum time between two consecutive points has to be a fraction of the 

minimum period to analyse. For example if the minimum period is 3h it should be 

10% of this, i.e. 18 min 

- The minimum time interval to analyse has to be at least 3 times the larger period 

considered. So if the maximum period is 1 year, it should be 3 year.  

- As the time interval and the time difference has been fixed, also the number of 

points is fixed. In order to make this period representative of the whole period 

analysed, every points considered in this learning harmonics estimation should 

have a weight corresponding to the ratio:  Np/Real Number of points. 

 

At this point the coefficients of C can be stored and from that moment on the same 

method outlined above can be used. 

 



14 

4.2 Computations performed using only yearly periods 

Another case is when it is the case that yearly harmonics have been determined. In that 

case it could be useful to use the individual previous years harmonics to estimate the 

overall period estimates. 

 

Suppose that you have N sets of harmonics, one for each year.  

 

SET1={z0,a1,b1,a2,b2…an,bn}1,SET2={z0,a1,b1,a2,b2…an,bn}2…SETN={z0,a1,b1,a2,b2…an,bn}N 

 

It is possible to perform a similar strategy as in the previous case. 

 

Using SET1, build a series of data points, using the constants present in SET 1 and obtain 

a first matrix C; repeat the same with a series of data points corresponding to SET2 and 

so on. The final matrix that will be obtained and its solution, will be equivalent to the 

whole set of data points. 
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5 Progression of the Harmonics over the time 

5.1 When the harmonics are representative? 

It is sometimes interesting understand after how many cycles the harmonics become 

representative of the real tide. This depends on the period of the harmonic that is 

considered but in general it is necessary to wait several months for most of the 

harmonics constituents and many years for the longest components. 

In order to monitor the progression of the harmonics the data from an Italian tide gauge 

(San Benedetto del Tronto) has been analysed for 10 years, kindly provided by ISPRA. 

The modulus of the largest coefficients of the harmonics (square root of the sum of the 

squares of the sinus and cosinus components) are presented in the following table as 

obtained by each additional year considered. The periods in hours or days are indicated 

at the first and second line. 

Hours  11.96723443 11.9999996 12.4206015 12.6583479 23.9344691 24.0658897 25.8193413 763.486415 4382.90841 8766.23946 

Days Z0 0.49863 0.50000 0.51753 0.52743 0.99727 1.00275 1.07581 31.81193 182.62118 365.25998 

10/03/2000 21.31535 0.048977 0.086069 0.511912 0.015567 623.1244 383.9314 0.011554 0.098936 7.709654 28.7035 

21/02/2001 0.196814 0.015236 0.05907 0.096424 0.01643 0.048406 0.016731 0.015795 0.031872 0.031966 0.061857 

25/02/2002 0.19594 0.01625 0.059253 0.096808 0.016394 0.050042 0.017029 0.017071 0.02176 0.022042 0.038163 

08/02/2003 0.180554 0.01748 0.059413 0.096709 0.016431 0.051075 0.01673 0.017783 0.020938 0.011126 0.05355 

01/01/2004 0.184339 0.017722 0.059458 0.096488 0.016273 0.051554 0.016686 0.017971 0.019944 0.011824 0.060085 

21/02/2005 0.182593 0.018868 0.059666 0.096132 0.015942 0.052393 0.016785 0.019013 0.010153 0.015437 0.059113 

04/02/2006 0.183871 0.019543 0.059715 0.095761 0.015799 0.053188 0.016634 0.01935 0.008157 0.012353 0.056748 

18/01/2007 0.18409 0.019903 0.059742 0.095562 0.015662 0.053707 0.016805 0.01964 0.008327 0.009073 0.053376 

07/01/2008 0.182792 0.020248 0.05986 0.095491 0.015678 0.054019 0.01677 0.019808 0.006333 0.007816 0.050176 

27/02/2009 0.178955 0.020253 0.060034 0.095446 0.015825 0.054176 0.016572 0.019957 0.007264 0.005799 0.046597 

05/01/2010 0.169274 0.019939 0.060347 0.095775 0.016062 0.054286 0.016753 0.019816 0.000671 0.009971 0.05025 

06/01/2011 0.123383 0.019567 0.060863 0.096946 0.016372 0.053181 0.016684 0.019575 0.014218 0.024666 0.077229 

03/01/2012 0.122064 0.019057 0.061275 0.097487 0.016492 0.052894 0.01687 0.019469 0.019772 0.02451 0.057702 

05/01/2013 0.125478 0.018165 0.061244 0.097944 0.01629 0.051979 0.01691 0.019126 0.016443 0.024661 0.060541 

01/01/2014 0.117213 0.017591 0.061161 0.098722 0.016339 0.050801 0.016802 0.01854 0.01251 0.014237 0.050137 

Table 2 - Modules of the largest coefficients of the harmonics as obtained by each additional year 
considered for the Italian tide gauge of San Benedetto del Tronto. 

In the table above the cells are colored in red if the changes respect to the final value 

(2014) is larger than 5%. It is possible to note that some of the shorter period harmonics 

stabilize quite fast while the longest periods harmonics are not yet stabilized. The 

constant term was almost stabilized in 2009 but then between 2009 and 2010 an 

important drop is present. 

It is therefore important to follow the development over the years in order to be sure 

that the data are consistent and the harmonics meaningful. Changes in the hardware or 

in the reference points can invalidate the quality of the harmonics obtained and should 

be checked regularly. For this reason we established a number or tools that allow to 

monitor the evolution of the harmonics over long periods of time. 
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Figure 4 – Behaviour of the main components of the harmonics of San Benedetto del Tronto, over 
the years 

 

 

 

Figure 5 – Constant term variation over the years for San Benedetto del Tronto Signal 
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6 Realtime detiding 

The worldwide data for which we at JRC perform detiding is shown in the figure below. 

Those are about 1000 signals for which it is possible to obtain current values of the 

measured sea level and the constants that allow to detide these signals. 

 

The procedure has been written in VB.net and consists in calculating for a period starting 

from the last time the procedure was run to the current time, the harmonics according to 

the method described earlier and storing in a SQL database all the data of the matrix C 

and of the known terms Tn for each of the sensor.  

 

Dedicated internet URL is available to retrieve the list of sensors and for each sensor the 

sea level in a specified time interval and the harmonics constants. 

 

 

Figure 6 – Geographical distribution of the signals for which the harmonics are computed 

 

The procedure is continuously running and we hope that, if the measurement devices 

reference are not changed, to have more and more refinement in the estimation of the 

harmonics constituents. At the moment we offer the sea level with this page 

 

http://webcritech.jrc.ec.europa.eu/worldsealevelinterface/?list=true  

 

and if you enter in one of the sea levels indicating its ID, i.e.  Setubal, SET-01, ID=2033 

 

http://webcritech.jrc.ec.europa.eu/worldsealevelinterface/?id=2033    

 

the harmonics are present in the reply, in the 11th row. 

http://webcritech.jrc.ec.europa.eu/worldsealevelinterface/?list=true
http://webcritech.jrc.ec.europa.eu/worldsealevelinterface/?id=2033
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Figure 7 – Harmonics for Setubal station created by JRC 

Source: JRC - http://webcritech.jrc.ec.europa.eu/worldsealevelinterface/?id=2033  

They are 69 terms separated by “|” signal 

In each block there are 3 terms: 

Period (days)| cos coefficient (m) | sin coefficient (m) 

 

Summing up all these terms you can get the tide. An example of signal and its harmonics 

forecast is shown in the following figure for Setubal tidal gauge (Portugal). The blue 

curve is the measurement, the red curve is the estimated tide while the green dotted 

curve is the tide forecast. 

 

Figure 8 – Sea level signal in Setubal with the tide forecast for the next 4 days 

 

http://webcritech.jrc.ec.europa.eu/worldsealevelinterface/?id=2033


19 

7 Conclusions 

The detiding process is important in the analysis of Natural events. The determination of 

tidal components using the harmonics evaluation is a rather known method; at JRC we 

established a novel procedure that allows to continuously calculating the harmonics 

coefficients taking into account all the points acquired over the years.  

 

It is shown that some years are necessary in order to stabilize also the yearly 

components of the tide but the merit of the implemented method is the fast estimation 

so that at JRC the calculations are performed every 1 h since several years. 
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Annexes 

Annex 1. Function to convert sin/cos into speed/phase  

NOCS=NOAA=ISPRA=JRC 

 

Hnocs cos (σnocst − gnocs)=HNOAA cos (sNOAA th π/180 − gnoaa) = HISPRA cos (fISPRA t – gISPRA) = AJRC cos 

(σJRC t*) + Bn sin(σJRC t*)  

 

function convertCoeff(ccos, csin, TauDays,  byref h, byref teta) 

 

    Dim a1, b1, h, al, teta, t0, pi, taugiorni As Double 

 

    t0 = CDate("1/1/1976") 

    pi = 3.14159265358979 

 

    a1 = ccos  

    b1 = csin             

     

    h = (a1 ^ 2 + b1 ^ 2) ^ 0.5 

    al = acos(a1 / h) * pi / 180 

 

    If Sgn(sin(al)) <> Sgn(b1) Then 

        al = -al 

    End If 

         

    teta = (al - 2 * pi * t0 / TauDays) * 180 / pi 

    teta = modReal(teta) 

 

End Function 

 

Function modReal(fase) 

         

n = Int(fase / 360) 

fase1 = fase - n * 360 

modReal = fase1 

 

End Function 
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